Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions

نویسندگان

  • D E Vega-Salas
  • P J Salas
  • D Gundersen
  • E Rodriguez-Boulan
چکیده

The time course of development of polarity of an apical (184-kD) and a basolateral (63-kD) plasma membrane protein of Madin-Darby canine kidney cells was followed using semiquantitative immunofluorescence on semithin (approximately 0.5-micron) frozen sections and monoclonal antibody probes. The 184-kD protein became highly polarized to the apical pole within the initial 24 h both in normal medium and in 1-5 microM Ca2+, which results in well-spread, dome-shaped cells, lacking tight junctions and other lateral membrane interactions. In contrast, the basolateral 63-kD membrane protein developed full polarity only after incubation in normal Ca2+ concentrations for greater than 72 h, a time much longer than that required for the formation of tight junctions (approximately 18 h) and failed to polarize in 1-5 microM Ca2+. These results demonstrate that intradomain restriction mechanisms independent of tight junctions, such as self-aggregation or specific interactions with the submembrane cytoskeleton, participate in the regionalization of at least some epithelial plasma membrane proteins. The full operation of these mechanisms depends on the presence of normal cell-cell interactions in the case of the basolateral 63-kD antigen but not in the case of the apical 184-kD protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells.

Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. C...

متن کامل

Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity.

In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular ...

متن کامل

Transepithelial Glycoprotein Implanted Membrane of Madin-Da I. Morphological Eviden Transport of a Viral Membrane into the Apical Plasma rby Canine Kidney Cells

The G protein of vesicular stomatitis virus was implanted in the apical plasma membrane of Madin-Darby canine kidney cells by low pH-dependent fusion of the viral envelope with the cellular membrane. The amount of fusion as determined by removal of unfused virions, either by tryptic digestion or by EDTA treatment at 0°C, was 22-24% of the cell-bound virus radioactivity. Upon incubation of cells...

متن کامل

Apical targeting of syntaxin 3 is essential for epithelial cell polarity

In polarized epithelial cells, syntaxin 3 localizes to the apical plasma membrane and is involved in membrane fusion of apical trafficking pathways. We show that syntaxin 3 contains a necessary and sufficient apical targeting signal centered around a conserved FMDE motif. Mutation of any of three critical residues within this motif leads to loss of specific apical targeting. Modeling based on t...

متن کامل

Depletion of E-Cadherin Disrupts Establishment but Not Maintenance of Cell Junctions in Madin-Darby Canine Kidney Epithelial Cells□V

E-cadherin forms calcium-dependent homophilic intercellular adhesions between epithelial cells. These contacts regulate multiple aspects of cell behavior, including the organization of intercellular tight junctions (TJs). To distinguish between the roles of E-cadherin in formation versus maintenance of junctions, Madin-Darby canine kidney (MDCK) cells were depleted of E-cadherin by RNA interfer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1987